Beam-Induced Electron Loading Effects in High Pressure RF Cavities

2010. 7. 19.

Moses Chung APC/Fermilab

All Experimenters' Meeting

Background

- Muon collider can lead Fermilab back to the energy frontier beyond LHC
- Key component of the muon collider is ionization cooling channel
- Toughest technical challenge: How to operate RF cavity in the presence of strong magnetic fields

RF Cavities for Cooling Channel

A. Moretti et al.

RF Cavities for Cooling Channel

What Happens with Beam?

Evacuated cavity

High pressure cavity

Induced voltage from beam current

Matched generator

 $V_c(t) = V_g(t) + V_b(t)$ $= V_F(t) + V_R(t)$

Additional shunt resistance from beam-induced electrons

Beam Loading Theory 1/2

Step 1: Beam-impact ionization + Ionization by secondary e-:

$$p + H_2 \rightarrow p + H_2^+ + e^ e^- + H_2 \rightarrow H_2^+ + 2e^-$$

$$\frac{\Delta n_e}{1 \text{ proton}} \approx \frac{\rho (dE/dx)\Delta s}{W_i (\approx 35 \text{ eV})} \times \frac{1}{(\pi r_b^2 \Delta s)} \sim 1000/\text{cm}^3$$

Step 2: Most electrons (>90%) are quickly thermalized inside the cavity by elastic and inelastic collisions, and drift with RF until annihilated by recombination or attachment:

$$\frac{dn_{e}}{dt} = S + k_{i}n_{g}n_{e} - \beta_{r}(T_{e})n_{e}^{2} - k_{a}(T_{e}, T_{g})n_{g}n_{e} - \frac{D}{\Lambda^{2}}n_{e}$$

$$e^{-} + H_{2}^{+} \rightarrow H + H$$

$$e^{-} + H_{3}^{+} \rightarrow H + H + H, H_{2} + H$$

$$e^{-} + H_{3}^{+} \rightarrow H + H + H, H_{2} + H$$

$$6$$

Beam Loading Theory 2/2

Step 3: Response of plasma electrons to the RF field is described by complex conductivity:

$$\sigma_{DC} = \frac{n_e e^2}{m_e v_m} \qquad \sigma = \sigma_{DC} \left(\frac{v_m^2}{v_m^2 + \omega^2} - j \frac{\omega}{v_m} \frac{v_m^2}{v_m^2 + \omega^2} \right)$$

$$\Delta \left(\frac{1}{Q} \right) \approx \frac{\int \frac{1}{2} \sigma_{DC}(r) E_0^2(r, z) dV}{\omega \int \frac{1}{2} \varepsilon_0 E_0^2(r, z) dV}, \quad \Delta f_0 \approx \frac{f}{2} \left(\frac{\omega}{v_m} \right) \times \Delta \left(\frac{1}{Q} \right) > 0$$

Step 4: Equivalent circuit model:

$$\begin{cases} V_c = V_F + V_R \\ \left\{ \frac{d^2}{dt^2} + \omega_0 \left(\frac{1}{Q_L} + \Delta \left(\frac{1}{Q} \right) \right) + \omega_0^2 \right\} V_c = 2 \frac{\omega_0}{Q_e} \frac{dV_F}{dt} - \frac{\omega_0}{2} \left[\frac{R}{Q} \right] \frac{dV_b}{dt} \end{cases}$$

Additional damping term by beam-induced electrons

Additional driving term by beam itself

Expected Results

What is the Solution?

Beam Test

Beam test of the high pressure RF cavity will be a critical step for muon accelerator R&D program (MAP)

Thanks to the collective work among APC/AD/TD, we're almost ready (Fall 2010) to do the beam test!